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Review 
On the Twyman effect and some of its 
applications 

E. G. N I K O L O V A  
Higher Institute of Electrical and Mechanical Engineering, Sofia, Bulgaria 

This review is a survey of a number of papers on the Twyman effect, discovered in 1905, 
in the processing of optical glass. The subject of these works is a detailed study of the 
Twyman effect in optical glass, quartz and sapphire crystals, and metals in the form of 
thin wafers with a thickness of 1 to 0.1 mm. It has been established that plane-parallel 
wafers of the studied materials, ground on one side and polished on the other, bend until 
the surface becomes strictly spherical or elliptical, concave on the polished side with a 
radius of curvature in a quadratic dependence of the wafers' thickness and not depending 
on their size and shape. A phenomenological conclusion of the main law has been drawn. 
It reveals the physical sense of the Twyman effect through its connection with the surface 
tension of solids. Three new methods have been worked out which are rather interesting 
prospective applications of the Twyman effect (for studying anisotropy in crystals, for 
processing concave spherical mirrors, for measuring apparatus and for preparing a new 
type of spherical crystalline diffraction lattice for X-ray spectroscopy). 

l .  I n t r o d u c t i o n  

The Twyman effect is an interesting phenomenon, 
first observed by the English optician, Twyman, in 
1905. The phenomenon can be stated simply as 
follows: when a plane-parallel wafer cut out of 
optical glass with a thickness of several millimetres 
is polished on one side and ground on the other, i t  
bends, the polished side becoming concave. 

A complete investigation of the Twyman effect 
was not undertaken until 10 years ago. Although 
some of its aspects have been studied in a small 
number of works [ 1-6], devoted to this phenom- 
enon in optical glass, as well as in some semi- 
conductors, a plausible physical explanation of the 
causes of this effect has not been given. It is 
supposed by most authors that the phenomenon 
is due to the microfissures in the ground side, 
created by the abrasive powder. Twyman himself 
has not investigated this phenomenon further. 
Like other authors, he considered it a difficulty in 
optical industry in the production of some optical 
details. 

This paper is a review of a number of our works 

[7-13, 15, 17], whose object is a detailed study of 
the Twyman effect in optical glasses, quartz glass, 
quartz and sapphire crystals and metals. The strict 
physical law to which this effect is subjected has 
been experimentally determined. A new, more 
plausible explanation of the causes of the Twyman 
effect has been put forward. A phenomenological 
conclusion has been made, confirming the exper- 
imentally obtained law of the Twyman effect. In 
addition, the relation of this effect with the sur- 
face tension in solids has been shown. 

Some interesting applications of the Twyman 
effect have been given. 

2. Experimental studies on the Twyman 
effect in glasses, crystals and metals 

Using the technology and processing suggested by 
us [7], it was possible to obtain even the thinnest 
plane-parallel wafers of an order of 0.1 mm, even 
0.05mm, cut out of optical glass and crystals, 
polished on one side and ground on the other, 
without the Twyman effect manifesting itself until 
the end of the processing. This processing tech- 
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TAB I~ E I Dependence of the radius of curvature, R, on 
the diameter of wafers, 2r, with different thicknesses 

h=0 .5mm h=0 .3mm 

2r(mm) R(m) 2r(mm) R(m) 

15 19.80 15 5.78 
12 19.65 12 5.65 
8 20.41 8 5.78 

nology gave us the opportunity of making system- 
atic studies of  the Twyman effect that enabled us 
to get closer to its physical nature. 

The final experimental studies were conducted 
by measuring the diameters of  the Newton rings, 
obtained during the interference in monochromatic 
light, reflected by the bent concave surface of  the 
wafer and a plane or a concave optical glass 
standard. 

The Twyman effect was studied above all with 
wafers cut from seven to eight kinds of  glass - 
several types of  optical glass and quartz glass. It 
was experimentally determined that there is a 
strict repetition of  the observed phenomenon of 
spherical bending of  wafers of  different form, size 
and thickness. A series of  samples consisting of  a 
great number of  wafers in a round, square or rect- 
angular shape of  different size and thickness vary- 
ing between 0.1 and 1 mm was prepared for this 
purpose. The wafers were produced with great 
precision, with differences in the thickness at dif- 
ferent points on the wafers' surface up to 1/~m. 

Experiments showed that the radius of  the 
spherical surface of the wafers does not depend 
either on their shape or their size, but solely on 
their thickness and the characteristics of  the 
material. 

T A B L E I I Values of the material constant, a, from law 
R = ah 2 of the 2"wyman effect 

Material Quartz glass BK 7 BaK 2 SF 4 

a (10 -7 m -1) 7.0 5.8 5.3 4.4 

Table I gives the radii of  curvature, R, for 
round wafers o f  quartz glass with a thickness h = 
0.5 and 0.3 mm and different diameters, 2r. It can 
be observed that with the same thickness, the 
radius of  the spherical surface does not depend on 
the wafer's diameter. 

Figs. la and b are photographs of  the Newton 
interference rings for wafers of  quartz glass with a 
thickness h = 0.2 and 0.1 mm, respectively. It can 
be seen that with the smaller thickness the bending 
is noticeably greater: the Newton rings are greater 
in number and density. 

Fig. 2 shows graphically, on a double log scale, 
the dependence of  the wafers' radius of  curvature 
on their thickness, for several kinds of  optical glass 
and (for comparison) for quartz and sapphire 
monocrystal cut out perpendicularly to Z. As can 
be seen in the figure the dependencies, R ( h ) ,  are 
strictly linear on a log scale, the slope of  the 
straight lines being the same for all optical glasses 
and monocrystals that have been studied. 

It was determined from these experimental 
lines that the dependence R ( h )  for all optical 
glasses studied is a square parabola: 

n = ah 2, (1) 

where a is a new typical material constant of  the 
substance, depending on Young's modulus, E, the 
Poisson coefficient, #, and the surface state. Its 
values are given in Table II. 

Figure 1 Photographs of the interference rings for wafers of quartz glass of thickness h = 0.2 mm (a) and h = 0.1 mm 
(b). 
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Figure 2 Dependence of the radius of curvature 
on the wafers' thickness: 1, quartz glass; 2, 
BKT; 3, BaKe; 4, SF4; 5, quartz monocrystal 
with face (0001); 6, sapphire monocrystal 
with face (0001). 

It was established that wafers cut out of  quartz 
and sapphire monocrystals also bend according to 
the same law. The bending of  a wafer, cut out 
perpendicular to the Z-axis is strictly spherical, 
while that of  wafers cut out parallel to Z is ellip- 
tical. Moreover, for wafers perpendicular to X, the 
large axis of  the ellipse, is parallel to Z, Fig. 3 

Rim) shows a plot on a double log scale, of  tile depen- 
dencies R(h) for a wafer of a quartz monocrystal, 20 

15 cut out perpendicular to Z, as well as R'(h) and 
R"(h) for a wafer, cut out perpendicular to X, 10 
where R '  and R" are the radii of a curvature in the 8 
direction of  the large and the small axes of  the 6 
ellipse, respectively. 

4 Figs. 4 and 5 are photographs of  interference 
rings for two quartz wafers, cut out perpendicular 3 
to the Z-axis and for two others, cut out perpen- z 
dicular to the X-axis at two different thicknesses. 1.5 
The rings, circular and elliptical, are compared for 
equally thick wafers: h = 0.2ram (Fig. 4) and 1.0 
h = 0.1 mm (Fig. 5). As seen, with thinner wafers 0.8 
the interference rings are greater in number and 0.6 
density, since bending is greater in accordance 0.4 
with the law given in Equation 1. 

The Twyman effect was also studied on diffe- 0.07 
rent metals [11]. It has been established that 
wafers of  copper and silver steel bend in a strictly 
spherical surface with the polished side concave as 
a result of  the treatment by the above technology 
[7]. The dependence of the wafers' radius of  curva- 

ture on their thickness is shown graphically, on a 
double-log scale, in Fig. 6 (1, for copper wafers; 2, 
for silver steel wafers). As can be seen in the 
figure, the dependencies R(h) are strictly linear on 
a log scale, the slope of the straight lines being the 
same for both metals investigated and coinciding 
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Figure 3 Dependence of the radius of curvature on wafer 
thickness: line 1, R(h) for a wafer of quartz crystal cut 
out perpendicular to Z; lines 2 and 3, R"(h), and R'(h) 
for wafers perpendicular to X along the small and the 
large axes, respectively. 



Figure 4 Photographs of the Newton rings obtained from wafers of a quartz crystal of thickness h = 0.2 mm, cut out: 
(a) perpendicular to Z, (b) perpendicular to X. 

with that for optical glasses and crystals (Figs. 2 
and 3). It follows therefrom that the law (Equation 
1) also remains in force for metals. It should be 
noted, however, that the values of R for the same 
wafer thickness in metals are smaller by one order 
of magnitude than in optical glasses and crystals 
(from 0.04 to 2.00m). This shows that the 
Twyman effect is much more pronounced in 
metals. This is probably due to the greater inter- 
molecular forces of interaction on the wafers' 
polished side. 

The influence of temperature on the Twyman 
effect was also investigated [12]. Quartz mono- 
crystal wafers with ( 0 0 0  1) planes were investi- 
gated in an annealing regime at a heating velocity 
of 6 ~ C min -1, annealing temperature 500 ~ C (heat- 
ing for 30min) and a cooling velocity of 4~ 
min -1. The results showed that the radius of 
curvature changes insignificantly when heated 

under these conditions, the law (Equation 1) of 
the dependence of R on wafer thickness remaining 
in force, as can be seen from Fig. 7. Analogous 
results were obtained with the annealing of optical 
glass SF14 'for 30min at 300~ heating velocity 
6 ~ C min -1 and cooling rate 2 ~ C min -1, as shown in 
Fig. 8. This fact tends to confirm our assumption 
that the Twyman effect is caused mainly by the 
surface tension of the wafers' polished side and 
not only by the inner stresses, produced by differ- 
ent treatment of the two sides of the wafer, which 
may be expected to disappear after annealing. 

3. Theoretical conclusions. The Twyman 
effect and its relation to surface tension 
in solids 

The experimentally determined facts show that 
the bending of the wafers is exactly spherical and 
the radius of curvature, R, depending on the 

Figure 5 Photographs of the Newton rings obtained from wafers of a quartz crystal of thickness h = 0.1 mm, cut out 
(a) perpendicular to Z, (b) perpendicular to X. 

4 



R(rnl ~ I 

2.01 o/~/2 1.5 / /  

1.0 
0.8 00p / 

~ t / / f f  0.3 

0.15 

!!!f 
0"04 L__ ~- I ~- h 

0.07 0.1 0.15 0.2. 0.3 0.4 h (ram) 

Figure 6 Dependence of the radius of curvature on the 
thickness of the metal wafers (line 1 for copper wafers; 
line 2 for silver steel wafers). 

wafers' thickness, changes according to a strictly 
determined law (Equation 1). These facts, as well 
as a number of additional investigations of this 
phenomenon, give us grounds to suppose that the 
bending is due to the unilateral surface tension on 
the wafer's polished face, which is no longer 
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Figure 7 Dependence R(h) for quartz monocrystal wafers: 
1, before annealing; 2, after annealing. 
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Figure 8 Dependence R(h) for optical glass SF~4; 1,before 
annealing; 2, after annealing. 

balanced by the surface tension of the opposite 
side torn during grinding. This tearing of the 
ground face increases the intermolecular distances 
and therefore the surface tension forces on this 
face cease to act or decrease to a great degree and 
are unable to balance the surface tension forces on 
the polished side. As a result, the wafer bends 
until the forces of surface tension are balanced by 
the additional inner elastic forces which have 
appeared in accordance with Hooke's law. 

The surface energy of the polished side, Up, is 
proportional to the wafer's area, S: 

up = as, (2) 

where o is the coefficient of surface tension. When 
the wafer bends the change of energy, AUp, is 
proportional to the change of the wafer's area, 
AS, 

zxup = ozxs. (3) 

The coefficient o can be obtained from the condi- 
tions for the minimum of full energy of the wafer. 

The wafer's full energy can be represented as a 
sum of the energy of elastic deformation of the 
wafer, Ue, and the energy of the polished side, Up. 
The energy, Up, can be represented as a sum of the 
energy, Up, eom,, of the unbent state and the 
change of energy, AUp, caused by the bending and 
change of the area with AS, determined from 
Equation 3: 

Up = Up, eonst + AUp. (4) 



The full energy of  the wafer will be: 

v = up,~o~, + Aup + vo. (5) 

The energy of  elastic deformation, Ue, of  a 
spherically bent round wafer with a constant 
radius of  curvature, R,  can be easily obtained, 
using data from the theory of  elasticity: 

E Sm ha 
U e - - -  x 2, (6) 

1 - / a  12 

where x is the wafer's curvature, E is the Young's 
modulus, gt is the Poisson's coefficient, and Sm = 
7rr 2 is the area of  the neutral middle plane of the 
wafer. 

From the condition for the minimum of full 
energy, U, determined from Equation 5, differen- 
tiating with respect to x, we obtain: 

dU dAS  E Sm h3 
- -  = 0 = a + - - - - x .  ( 7 )  
dx dx 1 --/a 6 

It is evident from simple geometrical consider- 
ations that 

AS h 
- -  - -  h x  

Sm R 
o r  

A S  = - -  S m h x .  ( 8 )  

By substituting Equation 8 into Equation 7 we 
obtain: 

dU E Sm h3 
- 0 = - o S r n h - t  x ,  

dx 1 -- bt 6 

from where it follows that: 

1 E 1 E h 2 
o - - -  h 2 x  - (9) 

o 1 - - p  6 1--/a R 

From Equation 9 we obtain the dependence of 
R on the thickness of the wafers: 

1 E 
R - h 2 

60 1--/J  

o r  

where 
R = ah 2 (10) 

1 E 

a = 60 1 - / ~ "  (11) 

This derivation confirms the experimentally 
obtained law (Equation 1) for the dependence 
R(h)  and gives the physical sense of  the constant 
a, depending solely on the characteristics of the 
material, E and/~, and the surface state. On the 
other hand, Equation 11 leads to: 

1 E 
- . ( 1 2 )  

a 6a 1--/a 

As can be seen from Equation 12, the surface 
tension, a, defined above depends solely on the 
characteristics of the material E, /~ and a, but it 
does not depend on the geometrical size of  the 
investigated samples and is therefore a material 
constant. It can be easily determined by measuring 
the radius of curvature of  spherically bent thin 
wafers cut out of  different optical glasses and 
quartz or sapphire crystals (0 0 01), Using Equation 
12. The values thus obtained, together with the 
values of  other material constants for the optical 
glasses, quartz crystals and metals we investigated 
are given in Table III. 

We consider that the surface tension in solids 
defined by applying the Twyman effect is a con- 
tribution to the extremely important problem of  
surface tension and surface energy in solids. Most 
of  the experimental and theoretical methods for 
defining the surface energy and surface tension in 
solids that exist to date are stiU unsatisfactory. 
Most of  the experimental methods are indirect and 
involve destruction of  the solid. Such are the 
methods of  cleaving of  the crystal, of  measuring 
the heat of  dissolution by dispersion, of  subsiding 
oscillations and so on. The "zero creep method" 
is not associated with destruction, but with it o is 
defined under high temperature, close to the melt- 

TAB L E I I I Values of Young's modulus, Poisson's coefficient and surface tension, a, determined by the Twyman 
effect for optical glasses, quartz crystal and metals 

Material E (10 -1~ N m -2) ** a (10- 2 N m -l ) 

Quartz glass 5.9 0.33 2.10 
BK7 8.1 0.209 2.94 
BaK2 7.0 0.232 2.87 
SF4 5.4 0.244 2.77 
Quartz crystal (0 0 01) 7.3 0.135 3.35 
Copper 11.0 0.325 22.75 
Silver steel 21.0 0.260 57.77 



ing point, when the properties of  the solid change 

considerably. These methods are so imperfect 
that they give values for a sometimes differing by No. 
several orders of  magnitude. With the theoretical 
methods the different authors try to calculate o 

1 
on the basis of  various suppositions. The values for 2 
the surface energy of a given face of  the crystal 3 
for one and the same substance are as numerous as 4 
the authors who have calculated them. There is av. 
still no general theory on these problems and we 
do not know which of the calculated values of  o 
are nearer to the real ones. 

4. Applications of the Twyman effect 
4,1. Application of the Twyman effect as a 

new method of studying anisotropy of 
crystals 

The new method of studying anisotropy of 
crystals, based on the Twyman effect is, in 
appearance, similar to the classical method of  heat 
conduction of a given crystal face [ 14], although it 
essentially differs from it. 

For the anisotropic faces of quartz or sapphire 
monocrystals it is easy to see that the ratio of the 
radii of  curvature, R'/R", along the two axes of the 
elliptical rings is equal to the square of  the ratio of 
their corresponding lengths, dl/d2: 

-- \d-22] " (13) R'--; 

Consequently, according to our light-interference 
method,  we can determine the degree of ani- 
sotropy which is evident from the ellipsoid bend- 
ing, through one or the other ratio dl/d2 or R'/R". 

Table IV gives the ratios dl/d2 and R'/R" at two 
thicknesses h = 0.1 and 0.2 mm for wafers of  a 
quartz monocrystal  cut out perpendicular to the 
X-axis, measured for several samples of  equal 
thickness, while Table V gives analogous data for 
wafers of  the second rhombohedral  faces. 

As is seen from the tables, the ratio dl/d2 
(R'/R" respectively) is the same for each face of  

T A B L E  I V  A wafer of a quartz monocrystal cut out 
perpendicular to X 

No. h = 0.1 mm h = 0 .2mm 

d,/d 2 R'/R" d, /d 2 R'/R" 

1 1.16 1.34 1.16 1.33 
2 1.18 1.38 1.15 1.37 
3 1.19 1.39 1.18 1.39 

av. 1.18 1.37 1.165 1.36 

T A B L E V A wafer of  a quartz monocrystal cut out of  
the second ihombohedral faces 

h = 0 .1mm h = 0 . 2 m m  

d,/d~ R'IR" dJd 2 R']R" 
1.05 1.11 1.06 1.11 
1.07 1.15 1.05 1.12 
1.03 1.10 1.05 1.12 
1.07 1.11 1.06 1.11 

1.06 1.12 1.055 1.115 

the quartz monocrystal and it could serve to judge 
the degree of anisotropy. 

The data presented above demonstrate that the 
light-interference method of studying the ani- 
sotropy of crystals is simple and convenient. It is 
of interest probably as a preliminary method in 
studying the structure of crystals. 

4.2. Application of the Twyman effect as a 
new method of preparing concave 
spherical mirrors for measuring 
equipment 

According to the methods existing so far, concave 
spherical glass mirrors have usually been prepared 
by gradual grinding of suitably cut out samples of  
glass platelets with abrasive powder on spherically 
convex metal supports, usually made out of  brass 
with a definite radius of  curvature until the glass 
platelets acquire the same curvature. They are then 
polished on the same support with polishing 
powder and metallized to obtain better reflection 
of light. It is difficult to prepare very fight mirrors 
of  small sizes for sensitive equipment by this 
method. 

The new method we suggest of preparing con- 
cave spherical mirrors of  very small sizes for sensi- 
tive measuring equipment with a light-ray such as 
galvanometers, electrometers, voltmeters, oscillo- 
graphs, etc., is based on the Twyman effect [15]. 
Using the technology we suggest [7], a whole 
series of  spherically concave glass wafers can be 
produced. Their radii for a given kind of  glass can 
be determined from Fig. 2 and Equation 1 and 
depend only on their thickness, h. In order to use 
these wafers as mirrors in measuring equipment,  
they are metallized by evaporating aluminium or 
silver in vacuum. 

The advantage of  this method is not only its 
technological simplicity, but also the possibility of 
producing thin and light concave spherical mirrors 
of miniature sizes - with a thickness of  0.5 to 



0 . tmm and an area of 3 to 4nun 2 for very sensi- 
tive measuring apparatus using a light ray. The 
radius of these mirrors changes in a broad range 
20 to 0.4 m and it can be reduced even further by 
thinning the platelets to a respective thickness, 
h < 0.1 ram, defined by Fig. 2. 

This method makes possible the production of 
spherical mirrors also of a greater size: with a dia- 
meter of 50 to 100mm and considerably great 
radii of curvature, for use in small telescopes. 

4.3. Application of the Twyman effect as a 
method of preparing a new type of 
spherical crystalline diffraction lattice 
for X-rays 

There are several X-ray diffraction methods using a 
crystal lattice: those with a flat crystal (Bragg 
W.L, Bragg W.H.a .  SoUer), the methods of 
vertical focusing (Hamos, Kunzl) and of horizontal 
focusing (Johann, Johansson, Cauchois, Du Mond) 
[16]. The methods of vertical and horizontal 
focusing make use of single crystal wafers bent 
mechanically along the surface of a circular 
cylinder. 

Our investigations of the Twyman effect of 
quartz and sapphire monocrystals enabled us to 
prepare a new type of spherical crystalline dif- 
fraction lattice for X-rays [17]. The Twyman 
effect, as already seen, gives an opportunity of 
obtaining spherical bending of a wafer, cut out 
from the (0001)  plane of a quartz or sapphire 
monocrystal, as a result of its processing by the 
above technology. 

The radius of curvature, as can be seen from 
Fig. 2, can vary within wide limits (from 0.5 to 
20 m), depending solely on the thickness of the 
wafer. This means that the proposed method 
permits preparation of spherical crystalline wafers 
for X-ray spectroscopy with a pre-determined 
radius by thinning them, according to the tech- 
nology described, to a respective thickness as 
determined by tile plot in Fig. 2 (lines 5 and 6). 

The spherical crystalline diffraction lattice 
obtained in this way may be expected to possess 
considerable advantages over the crystalline lat- 
tices mechanically bent by the above methods, 
i.e. greater intensity of the spectral lines at the 
same or greater resolution. Preliminary exper- 
iments have been made along this line. 

5. Conclusions 
The detailed investigations of the Twyman effect 
can be further carried out along a number of 
prospective lines: 

1. investigation by this method of various solids 
(semiconductors, dielectrics, metals, etc); 

2. investigation of the influence of X-rays, 
nuclear radiation, ion implantation, etc., on this 
phenomenon; 

3. application of this effect as a method of 
investigating the surface tension or surface energy 
of two boundary, phases (of a solid and gas, liquid 
or another solid phase, etc.); 

4. we assume that tile results obtained can be 
applied in integral optics, microelectronics, opto- 
electronics, etc. 
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